Weibull Parameter Estimation Using Particle Swarm Optimization Algorithm
نویسندگان
چکیده
منابع مشابه
Parameter estimation of nonlinear econometric models using particle swarm optimization
Global optimization is an essential component of econometric modeling. Optimization in econometrics is often difficult due to irregular cost functions characterized by multiple local optima. The goal of this paper is to apply a relatively new stochastic global technique, particle swarm optimization, to the well-known but difficult disequilibrium problem. Because of its co-operative nature and b...
متن کاملAn approach to Improve Particle Swarm Optimization Algorithm Using CUDA
The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...
متن کاملISOGEOMETRIC STRUCTURAL SHAPE OPTIMIZATION USING PARTICLE SWARM ALGORITHM
One primary problem in shape optimization of structures is making a robust link between design model (geometric description) and analysis model. This paper investigates the potential of Isogeometric Analysis (IGA) for solving this problem. The generic framework of shape optimization of structures is presented based on Isogeometric analysis. By discretization of domain via NURBS functions, the a...
متن کاملParameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm
Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel charac...
متن کاملUsing Modified Fuzzy Particle Swarm Optimization Algorithm for Parameter Estimation of Surge Arresters Models
Accurate modeling and parameters identification of Metal Oxide Surge Arrester (MOSA) are very important for arrester allocation, systems reliability and insulation coordination studies. Several models with acceptable accuracy have been proposed to describe this behavior. It should be mentioned that the estimation of nonlinear elements of MOSAs is very important for all models. In this paper, a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering & Technology
سال: 2018
ISSN: 2227-524X
DOI: 10.14419/ijet.v7i3.32.18380